	Project:				Doc. n.:			
	Description:				Rev.:	date		
	CHS n	nember desig	n for axia	I force EC3				
ELEMENT: CHS_design_	axial_force	_						
Material properties								
Steel grade		S 275			Partial factor for re	esistance		
Yeld strength	$f_y =$	275	MPa		γ _{M0} =	1,00		
Ultimate tensile strength	f _u =	430	MPa		γ _{M1} =	1,00		
Young's modules	E=	210000	MPa		$\gamma_{M2} =$	1,25		
Reference code	EN 1993-1-1				11412	,		
Section properties	211 1000 1 1							
				1				
type		CHS		10		D	+	
section		CHS 219,1x10				Y		
diameter	d=		,1 mm					
thickness	t=		10 mm			<i>(</i>)		
area	A=		66 cm ²		X		x	
secondo moment of area	l=	359	98 cm ⁴		`	lacksquare		
radius of inertia	i=		,4 cm				<	
	=3	0,9				Ÿ		
ratio for local buckling	d/t=	21,9						
classification class		_	1					
buckling length about axis	L _o =		<mark>,8</mark> m					
weight	p=	51	,6 kg/m					
Sollecitazioni di progetto - SL	.U							
axial force - tension	$N_{Ed+}=$	78	<mark>33</mark> kN					
axial force - compression	$N_{Ed}=$	-78	<mark>33</mark> kN					
Check								
Tension check								
design tensile resistance	$N_{pl,Rd} = A f_{y}/\gamma_{MO} =$	180	06 kN					
check	$N_{Ed+} \leq N_{pl,Rd}$		33 kN ≤	1806		0,43	OK	
buckling check	33		_					
slenderness ratio	$\lambda = L_0/i =$	10	06 <		200 (slenderness limit	0,53	OK	
slenderness ratio	$\lambda_1 =$	86			,	, , -		
non dimensional slenderness	$\overline{\lambda} = \lambda / \lambda_1$	1,2						
ouckling curve a	α=	0,2						
/alue	Φ=	1,3						
eduction factor	χ=	0,						
lexural buckling resistance	$N_{b,Rd} = \chi A f_{y}/\gamma_{M1} =$		40 kN					
check	Fxt $\leq N_{b,Rd}$		33 kN ≤	940		0,83	OK	

	Partial factors for resista	ince	1 / 1/2 .		
6.1(1)	$\gamma_{M0} = 1.0$		V / A		
	$y_{M1} = 1.0$	and the same of th	1		
BSEN 1993-1-8		- 1	入 予		
Table 2.1	$p_{M2} = 1.25$ (for shear)	Page 1	Ŋ-		
	Trial section	J	7		
	Check diagonal bracing me	mber, "l	ok' (worst case).		
Stee1	Try: 219.1 × 10.0 mm thi	ck Circu	dar Hollow Section (CH	HS),	
Designers'	grade S275 steel				
Manual	Section Properties				
all a	Area	\boldsymbol{A}	$= 65.7 \text{ cm}^2$		
. (Second moment of area	I	= 3598 cm ⁴		
	Radius of gyration	i	= 7.40 cm		
Se Se I	Thickness	t	= 10.0 mm		
Annua A	Ratio for local Buckling	d / 1	21.9		
4	Material properties				
Table 3.1	As $t \le 40$ mm, for S275 steel				
	Yield strength	$f_{\scriptscriptstyle 7}$	$= \frac{275}{N/mm^2}$		
3.2.6 (1)	Young's modules	E	$= 210 \text{ kN/mm}^2$		

Example 10 B	racing and bracing connections	Sheet	4 of	12	Rev B3
Reference		•		Outpu	t
5.5	Section classification				
Table 5.2	Class 1 limit for section in compression, $d/t \le 50 \epsilon^2$				
	$\varepsilon = (235/\text{fy})^{0.5}$, fy = 275 N/mm ² , $\varepsilon = 0.92$, $\varepsilon^2 = 0$.	85			
	$d/t \le 50(0.85) = 42.5$ Therefore, $21.9 < 42.5$				
	For axial compression the section is Class 1.				
	Design of axially loaded compression members				
	Cross sectional resistance to axial compression				
6.2.4(1)				A	
Eq. 6.9	Basic requirement $\frac{N_{\rm Ed}}{N_{\rm c,Rd}} \le 1.0$			M.	The same of the sa
	$N_{\rm Ed}$ is the design value of the applied axial force $N_{\rm Ed}=F_{\rm bk}=783~{\rm kN}$	P		3	<i>P</i> 1
	No.Red is the design resistance of the cross-section for compression.	uniform	1)		
6.2.4(2) Eq. 6.10	$N_{c,Rd} = \frac{A \times f_y}{\gamma_{M0}}$ (For Class 1, 2 and 3 cross-sections)	H.			
	$N_{c,Rd} = \frac{6570 \times 275}{1.0} \times 10^{-3} = 1807 \text{ kN}$,		resist	pressive ance = 1807 kN
	$\frac{N_{\rm Ed}}{N_{\rm c,Ed}} = \frac{783}{1807} = 0.43 < 1.0$				
	Therefore, the compressive resistance of the cross sec adequate.	tion is			
	Flexural buckling resistance				
6.3.1.1(1) Eq. 6.46	For a uniform member under axial compression the barequirement is:	asic			
	$\frac{N_{\text{Ed}}}{N_{\text{hpd}}} \le 1.0$				

6.3.1.1(3) Eq. 6.47 6.3.1.2(1) Table 6.2 6.3.1.3(1) Eq. 6.50	$N_{\mathrm{b,Rd}}$ is the design buckling resistance and is determined from: $N_{\mathrm{b,Rd}} = \frac{\chi A f_{\mathrm{y}}}{\gamma_{\mathrm{M1}}}$ (For Class 1, 2 and cross-sections) χ is the reduction factor for the buckling curve and may be determined from Figure 6.4. For hot finished CHS in grade S275 steel use buckling curve a . For flexural buckling the slenderness is determined from: $\overline{\lambda} = \sqrt{\frac{A f_{\mathrm{y}}}{N_{\mathrm{cr}}}} = \left(\frac{L_{\mathrm{cr}}}{i}\right) \left(\frac{1}{\lambda_{\mathrm{l}}}\right)$ (For Class 1, 2 and 3 cross-sections)	Use buckling curve a
---	---	-------------------------

	Where:	
	Les is the buckling length	
	As the bracing member is pinned at both ends:	
	$L_{\rm er} = L = \sqrt{5000^2 + 6000^2} = 7810 \text{ mm}$	$L_{x} = 7810 \text{ mm}$
	$\lambda_1 = 93.9\varepsilon$	
Table 5.2	$\varepsilon = \sqrt{\frac{235}{f_{\rm y}}} = \sqrt{\frac{235}{275}} = 0.924$	
	$\lambda_1 = 93.9 \times 0.924 = 86.8$	$\lambda_1 = 86.8$
6.3.1.3(1) Eq. 6.50	$\overline{\lambda} = \left(\frac{7810}{74}\right) \times \left(\frac{1}{86.8}\right) = 1.22$	₹ = 1.22
Figure 6.4	For $\overline{\lambda} = 1.22$ and buckling curve a	
	$\chi = 0.51$	$\chi = 0.51$
	Therefore,	Flexural buckling
6.3.1.1(3)	0.51×65.7×10 ² ×275	resistance
Eq. 6.47	$N_{b,Rd} = \frac{0.51 \times 65.7 \times 10^2 \times 275}{1.0} \times 10^{-3} = 921 \text{ kN}$	$N_{\rm b,Rd} = 921 \text{ kN}$
6.3.1.1(1) Eq. 6.46	$\frac{N_{\rm Ed}}{N_{\rm b,Ed}} = \frac{783}{921} = 0.85 < 1.0$	
	Therefore, the flexural buckling resistance of the section is adequate.	
6.2.3	Design of axially loaded tension member and connection	
	When the wind is applied in the opposite direction, the bracing member considered above will be loaded in tension. Therefore, check section for the same magnitude of loading. Cross sectional resistance of the CHS to axial tension	
6.2.3(1)	Basic requirement $\frac{N_{\rm Ed}}{N_{\rm t,Rd}} \le 1.0$	
(4)	$N_{\rm Ed}$ is the design value of the applied axial tension $N_{\rm Ed}=F_{\rm bk}=783~{\rm kN}$	
3	N_{cRd} is the design tensile resistance of the cross-section	
*	For the CHS $N_{\text{t,Rd}} = N_{\text{pl,Rd}} = \frac{Af_{\text{y}}}{\gamma_{\text{MO}}}$	
	$N_{t,Rd} = \frac{6570 \times 275}{1.0} \times 10^{-3} = 1807 \text{ kN}$	Tensile resistance of CHS N.Rd = 1807 kN