RECTBEAM.xls
 

This Excel calculation can be downloaded by ExcelCalcs subscribers.Please login or Subscribe.

Description:

"RECTBEAM" is a spreadsheet program written in MS-Excel for the purpose of analysis/design of rectangular beam or column sections.  Specifically, the required flexural reinforcing, ultimate moment capacity, bar spacing for crack control, moments of inertia for deflection, beam shear and torsion requirements, and member capacity for flexure (uniaxial and biaxial) with axial load are calculated.  There is also a worksheet which contains
reinforcing bar data tables.

This program is a workbook consisting of eleven (11) worksheets, described as follows:

Worksheet NameDescription
  • Doc - Documentation sheet
  • Complete Analysis - Beam flexure, shear, crack control, and inertia
  • Flexure(As) - Flexural reinforcing for singly or doubly reinforced beams/sections
  • Flexure(Mn) - Ultimate moment capacity of singly or doubly reinforced beams/sections
  • Crack Control - Crack control - distribution of flexural reinforcing
  • Shear - Beam or one-way type shear
  • Torsion - Beam torsion and shear
  • Inertia - Moments of inertia of singly or doubly reinforced beams/sections
  • Uniaxial - Combined uniaxial flexure and axial load
  • Biaxial - Combined biaxial flexure and axial load
  • Rebar Data - Reinforcing bar data tables

Program Assumptions and Limitations:

1.  This program follows the procedures and guidelines of the ACI 318-99 Building Code.

2.  The "Complete Analysis" worksheet combines the analyses performed by four (4) of the individual worksheets all into one.  This includes member flexural moment capacity, as well as shear, crack control, and inertia calculations.  Thus, any items below pertaining to any of the similar individual worksheets included in this one are also applicable here.

3.  In the "Flexure(As)" worksheet, the program will display a message if compression reinforcing is required, when the beam/section cannot handle the ultimate design moment with tension reinforcing only.  Then a doubly-reinforced design is performed.

4.  In the "Flexure(As)" worksheet for a singly reinforced beam/section, when the required flexural reinforcing is less than the Code minimum, then the program will use the lesser value of either 4/3 times the required value or the minimum value as the amount to actually use for design.

5.  In the "Flexure(Mn)", "Uniaxial", and "Biaxial" worksheets, when the calculated distance to the neutral axis, 'c', is less than the distance to the reinforcement nearest the compression face, the program will ignore that reinforcing and calculate the ultimate moment capacity based on an assumed singly-reinforced section.

6.  In the "Uniaxial" and "Biaxial" worksheets, the CRSI "Universal Column Formulas" are used by this program to determine points #1 through #7 of the 10 point interaction curve.

7.  In the "Uniaxial" and "Biaxial" worksheets, the CRSI "Universal Column Formulas", which are used by this program, assume the use of the reinforcing yield strength, fy =60 ksi.

8.  In the "Uniaxial" and "Biaxial" worksheets, this program assumes a "short", non-slender rectangular column with symmetrically arranged and sized bars.

9.  In the "Uniaxial" and "Biaxial" worksheets, for cases with axial load only (compression or tension) and no moment(s) the program calculates total reinforcing area as follows:
           Ast = (Ntb*Abt) + (Nsb*Abs) ,  where: Abt and Abs = area of one top/bottom and side bar respectively.

10. In the "Uniaxial" and "Biaxial" worksheets, for pure moment capacity with no axial load, the program assumes bars in 2 outside faces parallel to axis of bending plus 50% of the total area of the side bars divided equally by and added to the 2 outside faces, and program calculates reinforcing areas as follows:
           for X-axis:  As = A's = ((Ntb*Abt) + (0.50*Nsb*Abs))/2
           for Y-axis:  As = A's = ((Nsb*Asb+4*Atb) + (0.50*(Ntb-4)*Atb))/2

11. In the "Uniaxial" and "Biaxial" worksheets, design capacities, fPn and fMn, at design eccentricity, e = Mu*12/Pu, are determined from interpolation within the interaction curve for each axis.

12. In the "Uniaxial" and "Biaxial" worksheets, when the design eccentricity falls between the "balanced" point (Point #7) and point of pure flexure (Point #9) the program uses  f = 0.7 at Point #7 and  f = 0.9  at Point #9. However, it should be noted that the Code permits the value of  'f'  to be increased linearly from a starting value of 0.70 at  fPn = 0.1*f 'c*Ag (Point #8),  up to the maximum value of 0.9 at Point #9, using:
     f = 0.90 - 2*Pu/(f 'c*Ag).   

13. In the "Biaxial" worksheet, the biaxial capacity is determined by the following approximations:
     a.  For Pu >= 0.1*f'c*Ag, use Bresler Reciprocal Load equation:
           1/fPn = 1/fPnx + 1/fPny - 1/fPo
           Biaxial interaction stress ratio, S.R. = Pu/fPn <= 1
     b.  For Pu < 0.1*f'c*Ag, use Bresler Load Contour interaction equation:
           Biaxial interaction stress ratio, S.R. = (Mux/fMnx)^1.15 + (Muy/fMny)^1.15 <= 1

14. The "Rebar Data"  worksheet contains tables of reinforcing bar data which include various bar properties,reinforcing bar areas based on spacing, and various plain welded wire fabric properties.

15. This program contains numerous “comment boxes” which contain a wide variety of information including explanations of input or output items, equations used, data tables, etc.  (Note:  presence of a “comment box” is denoted by a “red triangle” in the upper right-hand corner of a cell.  Merely move the mouse pointer to the desired cell to view the contents of that particular "comment box".)

This repository also includes "RECTBEAM (318-05).xls" which uses the ACI 318-05 Code.

Calculation Reference
ACI 318-99 Building Code
| Find on Amazon.com | Find on Amazon.co.uk | Find on Amazon.fr | Find on Amazon.de | Find on Amazon.ca |

Version History
Subscribe to this topic and get notified by mail about new posts Favorite to this topic Discuss this item in the forum. Check the version history to see how this calculation has changed over time. Use the Subscribe button to receive an automatic email should this calculation be updated to a higher version. Use the Favourite button so you can easily find this calculation in the future.

Submitted On:
14 Oct 2016
Submitted By:
ATomanovich
File Date:
14 Oct 2016
File Author:
Alex Tomanovich
File Version:
3.3
File Size:
972.00 Kb
File Type:
xls
Downloads:
807
Rating:
stars/5.gifTotal Votes:10
HTML Link:
Copy code below to your web page to create link to this page:
HTML Window:
Copy code below to your web page to create a dynamic window to this download:
Like This?:
View the profile of the person who submitted this calculation and see all their other calculations hosted at ExcelCalcs.
Need Help?:
Use the comment feature below to raise any questions relating to this download. The question will be automatically emailed the author and all users subscribing to this comment thread.

Comments  

 
#3 yosso 2016-10-14 15:23
Another excellent worksheet from the master!

Thank you so much for sharing your wisdom and knowledge!

Michael Jones
 
 
#2 albreqy 2010-05-08 21:55
i need this file
 
 
#1 MSH 2008-09-09 16:14
After I used, benefited, and enjoyed your spreadsheets, finally I found the time to say, "Thank you".
 

Please sign in or register to add a comment.

We have 6 guests and 37 members online
Contact Us
post/emailEmail (preferred method of contact)
telephone US +1 617 5008224
telephone EU +44 113 8152220
Our Feeds
Repository RSS. Forum RSS. User Comment RSS. News RSS.

 

 

Real Time Analytics